

Comparing Minimum Inhibitory Concentrations via Vitek of Methicillin-Resistant *Staphylococcus aureus* Isolates in Pediatric Patients

Renee McTee, PharmD Candidate¹, Lisa Lubsch, PharmD, BCPPS, AE-C, FPPAG^{1,2}, Jeanine Cain, PharmD, BCPPS², Robin Chamberland, PhD², Aaron Miller, MD³

1. Southern Illinois University Edwardsville 2. SSM Health Cardinal Glennon Children's Hospital 3. Saint Louis University School of Medicine

Southern Illinois University Edwardsville School of Pharmacy

BACKGROUND

- Methicillin-Resistant *Staphylococcus aureus* (MRSA) cause serious infections that can affect any age group
- A vancomycin minimum inhibitory concentrations (MIC) may be a useful indicator of a therapeutic vancomycin regimen for a patient's infection

OBJECTIVES

- To evaluate which of the three measured vancomycin MICs (\leq 0.5, 1, 2 µg/mL) is the most common among pediatric patients
- To establish which anti-MRSA treatment is prescribed most often
- To determine whether there is correlation with MIC and length of stay

METHODS

Study Design

•Retrospective, cross-sectional chart review using Epic for data collection of 256 patient cases

Inclusion Criteria

- •Pediatric patients aged 18 years or younger at the time of the MRSA infection
- •Patients cared for at Cardinal Glennon Children's Hospital from January 2018 through December of 2019
- •A confirmed MRSA infection as found by microbiology analyses
- •Treated with at least one oral or intravenous anti-MRSA drug

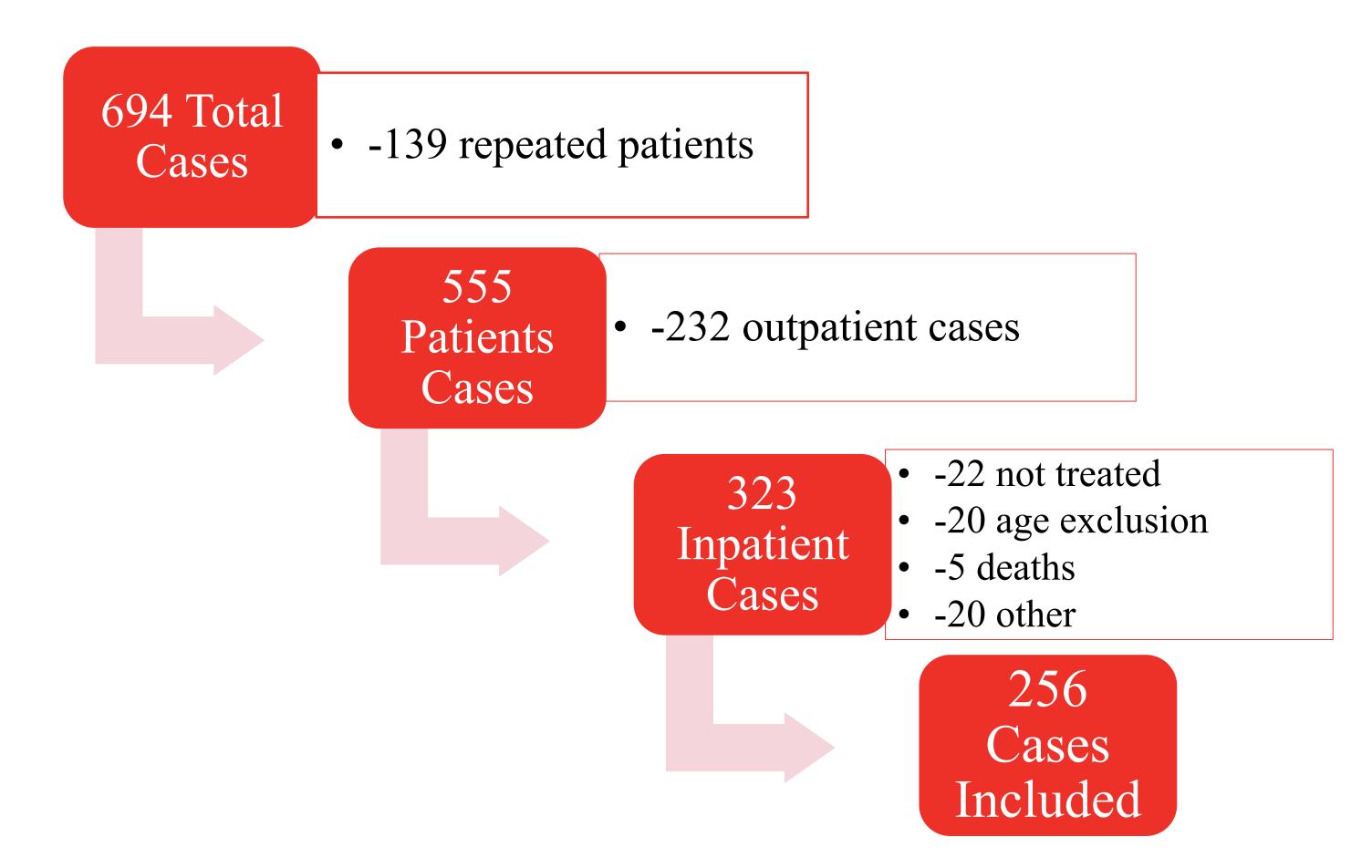
Exclusion Criteria

- Untreated MRSA infections
- Deceased patients

Study Measures: Dependent Variables

- •Primary Outcome: the number of patients with vancomycin MICs of ≤ 0.5 , 1, and 2 µg/mL as measured by a Vitek instrument
- •Secondary Outcome: hospital locations that had the most MRSA cases, length of stay, anti-MRSA treatment, and causes of the various MRSA infections

Study Measures: Independent Variables


•Age, gender, race

Data Analysis

- •Descriptive statistics including means, percentage, and standard deviations were used to describe sample population
- •A Mann-Whitney U Test was used to determine significance of the length of stay outcome

METHODS

Figure 1: Patients Inclusion

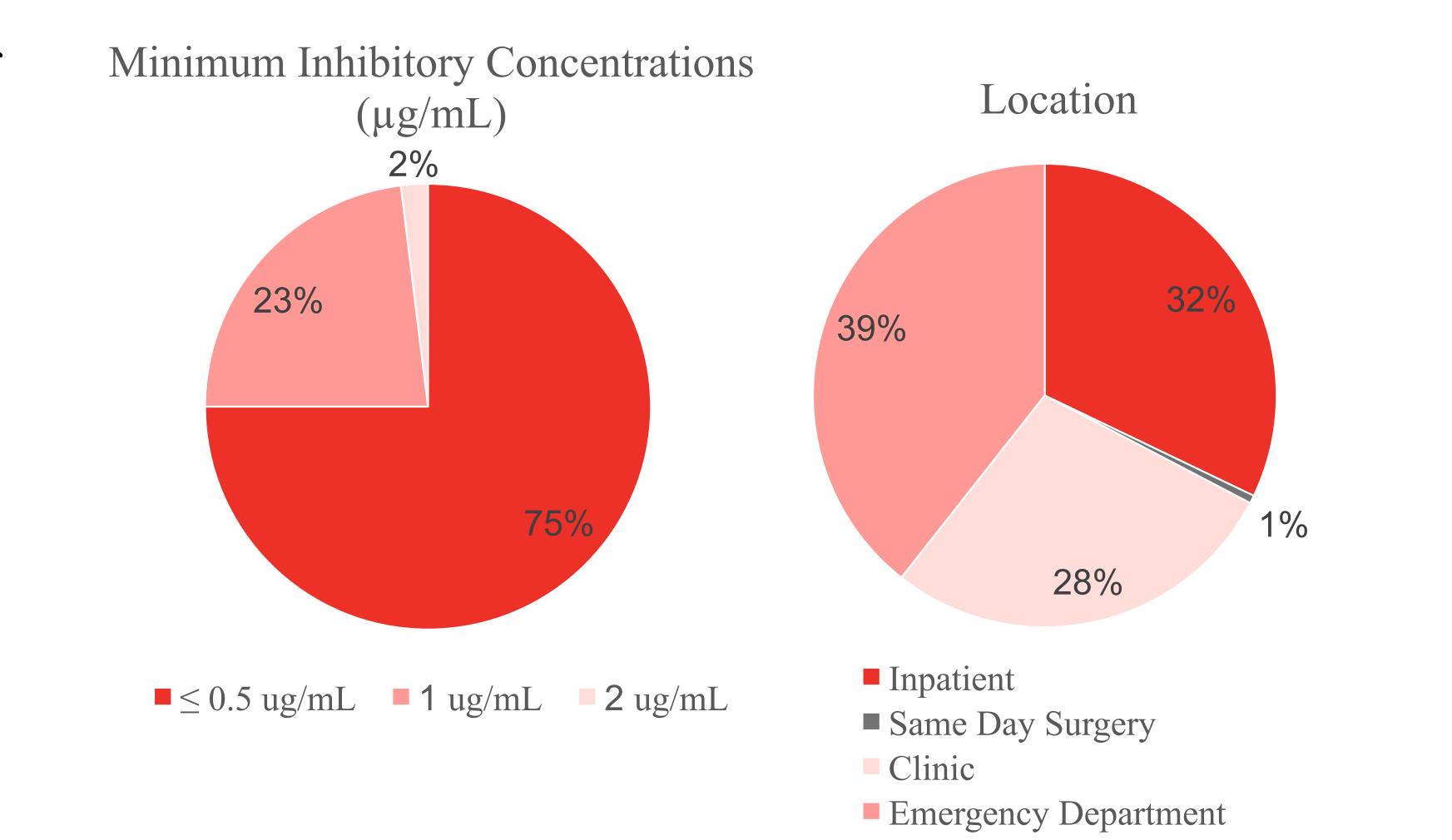

RESULTS

Table 1: Demographic Information

Age (years)	Number of Patients (%)	Mean Age ± Standard Deviation
0-1	80 (31)	
2-5	58 (23)	
6-10	50 (19)	6.1 ± 5.6
11-14	35 (14)	
14-18	33 (13)	

Gender	Number of Patients (%)	
Female	130 (50.8)	
Male	126 (49.2)	

Figure 2: Minimum Inhibitory Concentrations and Services

RESULTS

Table 2: Treatments of Methicillin-Resistant Staphylococcus aureus

Treatment	Number of Patients (%)	
Clindamycin	182 (70.8)	
Vancomycin	39 (15.2)	
Sulfamethoxazole/Trimethoprim	21 (8.2)	
Linezolid	5 (1.9)	
Cephalexin	3 (1.2)	
Combination of Above Drugs	4 (1.5)	
Other	3 (1.2)	

Table 3: Length of Stay

Minimum Inhibitory Concentration (μ g/mL) $n = 85*$ *Cystic fibrosis patients excluded	Average (days)	Standard Deviation	Significance
$\leq 0.5 \mu \text{g/mL}$	4.3	± 3.2	
1 μg/mL	6.9	± 5.8	P = 0.026

Table 4: Causes of MRSA Infections

Cause	$\leq 0.5 \mu\mathrm{g/mL}$ (%)	1 μg/mL (%)	2 μg/mL (%)
Skin & Soft Tissue	166 (86.0)	39 (66.1)	3 (60)
Cystic Fibrosis	7 (3.6)	9 (15.2)	2 (40)
Bacteremia	9 (4.7)	7 (11.9)	_
Bacterial Tracheitis	4 (2.1)	1 (1.7)	_
Pneumonia	3 (1.6)	1 (1.7)	_
Osteomyelitis	1 (0.5)	_	_
Other	3 (1.6)	2 (3.4)	_

LIMITATIONS

- Outpatient adherence was unable to be tracked
- Single center study
- Inadequate documentation
- Vitek differs from microbroth dilution (MBD) technique

CONCLUSION

- The majority of pediatric patients that present with MRSA infections have a vancomycin MIC of $\leq 0.5~\mu g/mL$
- Pediatric patients are most often treated with clindamycin for MRSA infections
- Higher vancomycin MICs may be associated with longer hospital lengths of stay