OFFICIAL SYLLABUS OR 440 – Operations Research: Deterministic Models

Adopted - Spring 2004 (Committee: Drs. M. Agustin, M. Cooper, E. Sewell) Prerequisites changed Fall 2015 by department consent.

Course Description. (Same as IE 415) Linear programming, problem formulation, simplex algorithm, transportation and network problems, duality theory, sensitivity theory. Prerequisite: MATH 250 with a grade of C or better and knowledge of a programming language.

Textbook. Operations Research: Applications and Algorithms, Forth Edition, by Wayne L. Winston.

Course Outline and Topics

Chapter 1: Introduction to Operations Research	6.4 Sensitivity Analysis When More Than One
1.1 The Methodologies of Operations Research	Parameter Is Changed: The 100% Rule
1.2 Successful Applications of Operations	6.5 Finding the Dual of an LP
Research (Optional)	6.6 Economic Interpretation of the Dual Problem
Chapter 3: Introduction to Linear Programming	6.7 The Dual Theorem and Its Consequences
3.1 What Is a Linear Programming Problem?	6.8 Shadow Prices
3.2 The Graphical Solution of Two-Variable	6.9 Duality and Sensitivity Analysis
Linear Programming Problems	6.10 Complementary Slackness
3.3 Special Cases	6.11 The Dual Simplex Model
3.4 A Diet Problem	6.12 An Application of Dual Prices: Data
3.5 A Work-Scheduling Problem	Envelopment Analysis (DEA) (Optional)
3.6 A Capital Budgeting Problem	Chapter 7: Transportation, Assignment, and
3.7 Short-Term Financial Planning	Transshipment Problems
3.8 Blending Problems	7.1 Formulating Transportation Problems
3.9 Production Process Models	7.2 Finding Basic Feasible Solutions for
3.10 Using Linear Programming to Solve	Transportation Problems
Multiperiod Decision Problems: An Inventor model	7.3 The Transportation Simplex Method
3.11 Multiperiod Financial Models (Optional)	7.4 Sensitivity Analysis for Transportation
3.12 Multiperiod Work Scheduling (Optional)	Problems (Optional)
Chapter 4: The Simplex Algorithm	7.5 Assignment Problems
4.1 How to Convert LP to Standard Form	7.6 Transshipment Problems (Optional)
4.2 Preview of the Simplex Algorithm	Chapter 8: Network Models
4.3 The Simplex Algorithm	8.1 Basic Definitions
4.4 Using the Simplex Algorithm to Solve	8.2 Shortest Path Problems
Minimization Problems	8.3 Maximum Flow Problems
4.5 Alternative Optimal Solutions	8.4 CPM and PERT (Optional)
4.6 Unbounded LPs	8.5 Minimum Cost Network Flow Problems
4.7 The LINDO Computer Package (Optional)	(Optional)
4.9 Degeneracy and the Convergence of the	8.6 Minimum Spanning Tree Problems
Simplex Algorithm	Chapter 9: Integer Programming (Optional)
4.10 The Big M Method	9.1 Introduction to Integer Programming
4.11 The Two-Phase Simplex Method	9.2 Formulating Integer Programming Problems
4.12 Variables That Are Unrestricted in Sign	9.3 The Branch-and-Bound Method for Solving
4.14 Solving LPs with Spreadsheets (Optional)	Pure Integer Programming Problems
Chapter 6: Sensitivity Analysis and Duality	9.4 The Brand-and-Bound Method for Solving
6.1 A Graphical Introduction to Sensitivity	Mixed Programming Problems
Analysis	9.5 Solving Knapsack Problems by the Branch-
6.2 Some Important Formulas	and-Bound Method
6.3 Sensitivity Analysis	9.6 Solving Combinatorial Optimization Problems
	by the Branch-and-Bound Method

Any instructor should cover all of the material specified; any additional sections are optional.