OFFICIAL SYLLABUS OR 441 – Operations Research: Stochastic Models Idented Spring 2004 (Committee: Drs. M. Agustin, M. Cooper, F. Soy

Adopted - Spring 2004 (Committee: Drs. M. Agustin, M. Cooper, E. Sewell)

Course Description. (Same as IME 461) Probabilistic models, elementary queuing theory with single or multiple server systems, use of queues in facility designs, elementary decision theory. Markov processes and decision-making. Prerequisite: STAT 380 or STAT 480a.

Textbook. Operations Research: Applications and Algorithms, Forth Edition, by Wayne L. Winston.

Course Outline and Topics

Chapter 13: Decision Making Under Uncertainty	19.4 Classification of States in a Markov Chain
13.1 Decision Criteria	19.5 Steady-State Probabilities and Mean First Passage
13.2 Utility Theory	Times
13.3 Decision Trees	19.6 Absorbing Chains
13.4 Bayes' Rule and Decision Trees	Chapter 20: Deterministic Dynamic Programming
13.5 Decision Making with the Normal Distribution	(Optional)
(Optional)	20.1 Two Puzzles
Chapter 14: Decision Making with Multiple	20.2 A Network Problem
Objectives (Optional)	20.3 An Inventory Problem
14.1 Multiattribute Decision Making in the	20.4 Resource Allocation Problems
Absence of Uncertainty: Goal Programming	20.5 Equipment Replacement Problems
14.2 Multiattribute Utility Functions	20.6 Formulating Dynamic Programming Recursions
Chapter 15: Game Theory (Optional)	Chapter 21: Probabilistic Dynamic Programming
15.1 Two-Person Zero-Sum and Constant-Sum	(Optional)
Games: Saddle Points	21.1 When Current Stage Costs Are Uncertain, but the
15.2 Two-Person Zero-Sum Games: Randomized	Next Period's State Is Certain
Strategies, Domination, and Graphical Solution	21.2 A Probabilistic Inventory Model
15.3 Linear Programming and Zero-Sum Games	21.5 Markov Decision Processes
15.4 Two-Person Non-Constant-Sum Games	Chapter 22: Queuing Theory
Chapter 16: Deterministic EOQ Inventory Models	22.1 Some Queuing Terminology
16.1 Introduction to Basic Inventory Models	22.2 Modeling Arrival and Service Processes
16.2 The Basic Economic Order Quantity Model	22.3 Birth-Death Processes
16.3 Computing the Optimal Order Quantity When	22.4 The $M/M/1/GD/\infty/\infty$ Queuing System and the
Quantity Discounts Are Allowed	Queuing Formula $L = \lambda W$
16.4 The Continuous-Rate EOQ Model (Optional)	22.5 The $M/M/1/GD/c/\infty$ Queuing System
16.5 The EOQ Model with Back Orders Allowed	22.6 The $M/M/s/GD/\infty/\infty$ Queuing System
16.6 When to Use EOQ Models	22.7 The $M/G/\infty/GD/\infty/\infty$ and $GI/G/\infty/GD/\infty/\infty$ Models
Chapter 17: Probabilistic Inventory Models	22.8 The $M/G/1/GD/\infty/\infty$ Queuing System
17.1 Single-Period Decision Models	22.9 Finite Source Models: The Machine Repair Model
17.2 The Concept of Marginal Analysis	22.10 Exponential Queues in Series and Open Queuing
17.3 The News Vendor Problem: Discrete Demand	Network
17.4 The News Vendor Problem: Continuous	22.11 The <i>M/G/s/GD/s/</i> ∞ System (Blocked Customers
Demand	Cleared) (Optional)
17.5 Other One-Period Models	22.12 How to Tell Whether the Interarrival Times and
17.6 The EOQ with Uncertain Demand: The (r, q)	Service Times Are Exponential
and (s, S) Models	22.13 What to Do If Interarrival or Service Times Are
Chapter 19: Markov Chains	Not Exponential
19.1 What Is a Stochastic Process?	22.14 Priority Queuing Models (Optional)
19.2 What Is a Markov Chain?	
19.3 <i>n</i> -Step Transition Probabilities	

Any instructor should cover all of the material specified; any additional sections are optional.