OFFICIAL SYLLABUS

502- ADVANCED CALCULUS FOR ENGINEERS

ADOPTED - SPRING 2006 (Committee: Pelekanos (chair), Lu, Leem)

Catalog Description

Review of Vector calculus, Green's theorem, Gauss' theorem, and Stokes' theorem. Complex analysis up to contour integrals and residue theorem. Not for MATH majors. Prerequisite: MATH 250 or consent of instructor.

Textbook

Advanced Engineering Mathematics, 2nd Edition by Michael D. Greenberg

Course Outline and Topics

- i) Chapter 14: Vectors in 3-Space (Brief review)
- ii) Chapter 15: Curves, Surfaces, and Volumes
 - 15.1 Introduction
 - 15.2 Curves and Line Integrals
 - 15.2.1 Curves
 - 15.2.2 Arc length
 - 15.2.3 Line integrals
 - 15.3 Double and Triple Integrals
 - 15.3.1. Double integrals (briefly)
 - 15.3.2 Triple integrals (briefly)
 - 15.4 Surfaces
 - 15.4.1 Parametric representation of surfaces
 - 15.4.2 Tangent plane and normal
 - 15.5 Surface Integrals
 - 15.5.1 Area element dA
 - 15.5.2 Surface integrals
 - 15.6 Volumes and Volume Integrals
 - 15.6.1 Volume element dV
 - 15.6.2 Volume integrals

iii) Chapter 16: Scalar and Vector Field Theory

- 16.1 Introduction
- 16.3 Divergence
- 16.4 Gradient
- 16.5 Curl
- 16.8 Divergence Theorem
 - 16.8.1 Divergence Theorem
 - 16.8.2 Two-dimensional case
- 16.9 Stokes's Theorem
 - 16.9.1 Line integrals
 - 16.9.2 Stokes's theorem
 - 16.9.3 Green's theorem
- 16.10 Irrotational Fields
 - 16.10.1 Irrotational fields

Chapter 21: Functions of a Complex Variable

21.1 Introduction

iv)

- 21.2 Complex Numbers and the Complex Plane
- 21.3 Elementary Functions
 - 21.3.1 Preliminary ideas
 - 21.3.2 Exponential function
 - 21.3.3 Trigonometric and hyperbolic functions

- 21.4 Polar Form, Additional Elementary Functions, and Multi-valuedness
 - 21.4.1 Polar form
 - 21.4.2 Integral powers of z and de Moivre's formula
 - 21.4.3 Fractional powers
 - 21.4.4 The logarithm of *z*
 - 21.4.5 General powers of z
 - 21.4.6 Obtaining single-valued functions by branch cuts
 - 21.4.7 More about branch cuts
- 21.5 The Differential Calculus and Analyticity
- Chapter 22: Conformal Mapping
- 22.1 Introduction

v)

- 22.2 The Idea Behind Conformal Mapping
- 22.6 Applications to Fluid Mechanics (optional)
- vi) Chapter 23: The Complex Integral Calculus
 - 23.1 Introduction
 - 23.2 Complex Integration
 - 23.2.1 Definition and properties
 - 23.2.2 Bounds
 - 23.3 Cauchy's Theorem
 - 23.4 Fundamental Theorem of the Complex Integral Calculus
 - 23.5 Cauchy Integral Formula
- vii) Chapter 24: Taylor Series, Laurent Series, and the Residue Theorem
 - 24.1 Introduction
 - 24.2 Complex Series and Taylor Series
 - 24.2.1 Complex series
 - 24.2.2 Taylor series
 - 24.3 Laurent Series
 - 24.4 Classification of Singularities
 - 24.5 Residue Theorem
 - 24.5.1 Residue theorem
 - 24.5.2 Calculating residues
 - 24.5.3 Applications of the residue theorem (optional)