OFFICIAL SYLLABUS
 MATH 423 - Combinatorics and Graph Theory
 Adopted - Spring 2004 (Committee: Drs. J. Parish, E. Sewell)

Abstract

Course Description. Methods of solving problems which are discrete in nature. Counting, combinatorial reasoning and modeling, generating functions, recurrence relations. Graphs: definitions, examples, basic properties, applications, algorithms. Prerequisites: 223, some knowledge of programming is recommended.

Textbook. Applied Combinatorics, Fifth Edition, by Alan Tucker
Course Outline and Topics
Chapter 1: Elements of Graph Theory
1.1 Graph Models
1.2 Isomorphism
1.3 Edge Counting
1.4 Planar Graphs

Chapter 2: Covering Circuits and Graph Coloring
2.1 Euler Cycles
2.2 Hamilton Cycles
2.3 Graph Coloring
2.4 Coloring Theorems

Chapter 3: Trees and Searching
3.1 Properties of Trees
3.2 Search Trees and Spanning Trees
3.3 The Traveling Salesperson Problem
3.4 Tree Analysis of Sorting Algorithms (Optional)

Chapter 4: Network Algorithms
4.1 Shortest Paths
4.2 Minimal Spanning Trees
4.3 Network Flows
4.4 Algorithmic Matching (Optional)

Chapter 5: General Counting Methods for Arrangements and Selections
5.1 Two Basic Counting Principles
5.2 Simple Arrangements and Selections
5.3 Arrangements and Selections with Repetitions
5.4 Distributions
5.5 Binomial Identities

Chapter 6: Generating Functions
6.1 Generating Function Models
6.2 Calculating Coefficients of Generating Functions
6.3 Partitions (Optional)

Chapter 7: Recurrence Relations
7.1 Recurrence Relation Models
7.2 Divide-and-Conquer Relations
7.3 Solution of Linear Recurrence Relations (Optional)
7.4 Solution of Inhomogeneous Recurrence Relations (Optional)
7.5 Solutions with Generating Functions (Optional)

Any instructor should cover all of the material specified; any additional sections are optional.

