OFFICIAL SYLLABUS

Math 421: Linear Algebra II

(Adopted - Fall 2005; Committee: Drs. U. Ledzewicz, K. Leem, C. Lu, J. Parish, G. Pelekanos)

Catalog Description: [Dist.NSM] Advanced study of vector spaces: Cayley-Hamilton Theorem, minimal and characteristic polynomials, eigenspaces, canonical forms, Lagrange-Sylvester Theorem, applications. Prerequisites: 223, 250, 321 or consent of instructor.

Textbook: Linear Algebra, 4th edition by S. Friedberg, A. Insel, and L. Spence.
The purpose of the course is to provide students rigorous theories of the principal topics of linear algebra.

Course Outline and Topics

Chapter 1-4 need to be reviewed carefully during the first 4 weeks (maximum).

```
Chapter 1, Vector Spaces (3 classes)
    - 1.1 Introduction
    - 1.2 Vector Spaces
    - 1.3 Subspaces
    1.4 Linear Combinations and Systems of
Linear Equations
    - 1.5 Linear Dependence and Linear
Independence
    - 1.6 Bases and Dimension
     1.7 Maximal Linearly Independent
Subsets
Chapter 2, Linear Transformations and Matrices (3
classes)
    - 2.1 Linear Transformations, Null Spaces,
and Ranges
    - 2.2 The Matrix Representation of a
Linear Transformation
    - 2.3 Composition of Linear
Transformations and Matrix Multiplication
    - 2.4 Invertibility and Isomorphism
    - 2.5 The Change of Coordinate Matrix
Chapter 3, Elementary Matrix Operations and
Systems of Equations (1-2 classes)
    3.1 Elementary Matrix Operations and
Elementary Matrices
    3.2 The Rank of a Matrix and Matrix
Inverses
    3.3 Systems of Linear Systems -
Theoretical Aspects
    3.4 Systems of Linear Systems -
Computational Aspects
```

Chapter 4, Determinants ($1 / 2$ class)

- 4.1 Determinants of Order 2
- 4.2 Determinants of Order n
- 4.3 Properties of Determinants
- 4.4 Summary

Chapter 5, Diagonalization

- 5.1 Eigenvalues and Eigenvectors
- 5.2 Diagonalizability
- 5.4 Invariant Subspaces and the Cayley-

Hamilton Theorem

Chapter 6, Inner Product Spaces

- 6.1 Inner Products and Norms
- 6.2 The Gram-Schmidt Orthogonalization

Process and Orthogonal Complements

- 6.3 The Adjoint of a Linear Operator
- 6.4 Normal and Self-Adjoint Operators
- 6.5 Unitary and Orthogonal Operators and

Their Matrices

- 6.6 Orthogonal Projections and the Spectral

Theorem

- 6.7 The Singular Value Decomposition and

Pseudoinverse

- 6.8 Bilinear and Quadratic Forms (Optional)

Chapter 7, Canonical Forms

- 7.1 The Jordan Canonical Form I
- 7.2 The Jordan Canonical Form II
- 7.3 The Minimal Polynomial
- 7.4 The Rational Canonical Form

Any instructor should cover all of the material specified; additional sections are optional.

