OFFICIAL SYLLABUS Math 421: Linear Algebra II

(Adopted - Fall 2005; Committee: Drs. U. Ledzewicz, K. Leem, C. Lu, J. Parish, G. Pelekanos)

Catalog Description: [Dist.NSM] Advanced study of vector spaces: Cayley-Hamilton Theorem, minimal and characteristic polynomials, eigenspaces, canonical forms, Lagrange-Sylvester Theorem, applications. Prerequisites: 223, 250, 321 or consent of instructor.

Textbook: Linear Algebra, 4th edition by S. Friedberg, A. Insel, and L. Spence.

The purpose of the course is to provide students rigorous theories of the principal topics of linear algebra.

Course Outline and Topics

Chapter 1-4 need to be reviewed carefully during the first 4 weeks (maximum).

Chapter 1, Vector Spaces (3 classes) · 1.1 Introduction · 1.2 Vector Spaces · 1.3 Subspaces · 1.4 Linear Combinations and Systems of Linear Equations	Chapter 4, Determinants (1/2 class) • 4.1 Determinants of Order 2 • 4.2 Determinants of Order n • 4.3 Properties of Determinants • 4.4 Summary
• 1.5 Linear Dependence and Linear	Chapter 5, Diagonalization • 51 Figenvalues and Figenvectors
1.6 Bases and Dimension	 5.2 Diagonalizability
Subsets	+ 5.4 Invariant Subspaces and the Cayley- Hamilton Theorem
Chapter 2, Linear Transformations and Matrices (3 classes) · 2.1 Linear Transformations, Null Spaces, and Ranges · 2.2 The Matrix Representation of a Linear Transformation · 2.3 Composition of Linear Transformations and Matrix Multiplication · 2.4 Invertibility and Isomorphism · 2.5 The Change of Coordinate Matrix	Chapter 6, Inner Product Spaces · 6.1 Inner Products and Norms · 6.2 The Gram-Schmidt Orthogonalization Process and Orthogonal Complements · 6.3 The Adjoint of a Linear Operator · 6.4 Normal and Self-Adjoint Operators · 6.5 Unitary and Orthogonal Operators and Their Matrices · 6.6 Orthogonal Projections and the Spectral Theorem · 6.7 The Singular Value Decomposition and
Chapter 3, Elementary Matrix Operations and Systems of Equations (1.2 classes)	Pseudoinverse
• 3.1 Elementary Matrix Operations and	• 0.8 Binnear and Quadratic Forms (Optionar)
Elementary Matrices	Chapter 7, Canonical Forms
• 3.2 The Kank of a Matrix and Matrix	• 7.1 The Jordan Canonical Form I • 7.2 The Jordan Canonical Form II
· 3.3 Systems of Linear Systems -	• 7.3 The Minimal Polynomial
Theoretical Aspects	• 7.4 The Rational Canonical Form
· 3.4 Systems of Linear Systems - Computational Aspects	

Any instructor should cover all of the material specified; additional sections are optional.